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Abstract

The absense of the point spectrum of the Dirac operator is investigated. By the method of an integral
identity, it is shown that some non-compact complete manifold with a pole has no L2-eigenspinors for
non-zero eigenvalues.
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1. Introduction

The purpose of this paper is to study the point spectrum of the (classical) Dirac operator on
complete non-compact Riemannian manifolds.

The Laplace-Beltrami operator on a complete non-compact Riemannian manifold is an un-
bounded essentially self-adjoint operator on the space of functions with compact support, and the
spectrum of its closure was investigated intensively ([2,3,5,9,11], etc.). To show the absence of
the point spectrum in some geometric assumptions, [4,6] used a method originally due to [13].
This method, which relies on an integral identity, was extended to the case of differential forms
in [7] too.

Recently the spectrum of the Dirac operator is also investigated by many authors ([1], etc.).
In this paper, we apply the method in [4,6,7] to the Dirac operators on complete non-compact
manifolds.
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If a Riemannian manifold M has a spin structure, we can construct the spinor bundle S on M. It
is a Hermitian bundle of left modules over the bundle of Clifford algebras together with a metric
connection ∇ which is compatible with Clifford multiplication by tangent vectors ([12], p. 114).
The Dirac operator D : C∞(S) → C∞(S) is defined by the equation

Dσ =
∑
i

ei · ∇eiσ

where {ei} is an orthonormal bases of the tangent space at a point of M and “·” denotes the Clifford
product.

The Dirac operator with domain C∞
0 (S) is an essentially self-adjoint operator on L2(S) if M

is complete [14]. The domain of its closure, which will be denoted by the same letter is W1(S).
By the elliptic regularity, eigenspinors of D belong to C∞(S).

A point p of a Riemannian manifold M is said to be a pole if and only if the exponential mapping
expp is a diffeomorphism from Tp(M) to M [8]. In this paper, we consider only a spin manifold
with a pole. It is contractible and hence has a unique spin structure. Our main result shown in
Theorem 3. In this theorem, zero eigenvalue is not excluded in general. To determine whether a
complete non-compact manifold has harmonic spinors or not seems to demand a different sort of
consideration from the case of non-zero eigenvalues.

2. Integral identity

In this section, we show an integral identity for the Dirac operator which is the key ingredient
in our argument. This kind of identity was used by many mathematicians in the problems of the
Laplacians for functions and differential forms.

Let M be a Riemannian spin manifold of dimension n (not necessarily with a pole). The
Hermitian metric 〈 , 〉 and a metric connection ∇ on its spinor bundle S satisfy the following
properties: for any spinors ϕ,ψ and any tangent vector v, the identity

〈v · ϕ,ψ〉 + 〈ϕ, v · ψ〉 = 0

holds. For any vector field X and any spinor field ψ. we have the identity

∇(X · ψ) = (∇X) · ψ +X · ∇ψ.
Let us take a vector field X and a spinor field ψ on M. We define a spinor field X(ψ) by the

following identity:

X(ψ) =
∑
i,j

〈ei,∇ejX〉 ej · ∇eiψ.

It is evident that the right hand side does not depend on the choice of an orthonormal frame {ei}.
Lemma 1. Let X and ψ be a vector field and a spinor field respectively. Then we have the
following identity:

Re 〈Dψ,D(∇Xψ)〉 = Re 〈Dψ,X(ψ)〉 + 1

2
div(|Dψ|2X) − 1

2
(divX)|Dψ|2

+ 1

2
Re〈Dψ,Ric(X) · ψ〉.
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Proof. To begin with, we recall the following identity which is called the 1
2 -Ricci formula in

Lemma 1.2 of [10]:

1

2
Ric(X) · ψ = D(∇Xψ) − ∇X(Dψ) −

∑
j

ej · ∇(∇ejX)ψ

where Ric denotes the Ricci transformation, i.e.,

Ric(X) =
∑
i

R(X, ei)ei.

From this formula, we have

Re〈Dψ,D(∇Xψ)〉 = Re〈Dψ,∇X(Dψ)〉 + 1

2
Re 〈Dψ,Ric(X) · ψ〉

+ Re

〈
Dψ,

∑
j

ej · ∇(∇ejX)ψ

〉
.

Inasmuch as

Re〈Dψ,∇X(Dψ)〉 = 1

2
(〈Dψ,∇X(Dψ)〉 + 〈∇X(Dψ),Dψ〉)

= 1

2
X(|Dψ|2) = 1

2
div(|Dψ|2X) − 1

2
(divX)|Dψ|2,

∑
j

ej · ∇(∇ejX)ψ =
∑
i,j

〈ei,∇ejX〉ej · ∇eiψ = X(ψ),

the proof is completed. �
Lemma 2. Let D be a bounded domain with smooth boundary in M. Then for any spinor field
ψ, any vector field X and any real number λ, we have∫

D

(|Dψ|2 − λ2|ψ|2)(divX) − 2Re
∫
D

〈Dψ,X(ψ)〉 + 2
∫
D

〈D2ψ − λ2ψ,∇Xψ〉

− Re
∫
D

〈Dψ,Ric(X) · ψ〉 =
∫
∂D

(|Dψ|2 − λ2|ψ|2)〈X, ν〉 + 2Re
∫
∂D

〈ν · Dψ,∇Xψ〉

where ν denotes the outward unit normal to ∂D.

Proof. The divergence theorem implies the following identities:

Re
∫
D

〈D2ψ,∇Xψ〉 = Re
∫
D

〈Dψ,D(∇Xψ)〉 + Re
∫
∂D

〈ν · Dψ,∇Xψ〉,

Re
∫
D

〈ψ,∇Xψ〉 + 1

2

∫
D

(divX)|ψ|2 = 1

2

∫
D

div(|ψ|2X) = 1

2

∫
∂D

|ψ|2〈X, ν〉.

Consequently, we obtain from Lemma 1 that

2Re
∫
D

〈D2ψ − λ2ψ,∇Xψ〉 − λ2
∫
D

(divX)|ψ|2

= 2Re
∫
D

〈Dψ,D(∇Xψ)〉 + 2Re
∫
∂D

〈ν · Dψ,∇Xψ〉 − λ2
∫
∂D

|ψ|2〈X, ν〉
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= 2Re
∫
D

〈Dψ,X(ψ)〉 +
∫
D

div(|Dψ|2X) −
∫
D

|Dψ|2divX+ Re
∫
D

〈Dψ,Ric(X) · ψ〉

−λ2
∫
∂D

|ψ|2〈X, ν〉 + 2Re
∫
∂D

〈ν · Dψ,∇Xψ〉.

This implies the desired equation immediately. �

It is easily shown that for any tangent vector v and any spinor ϕ, the term 〈ϕ, v · ϕ〉 is purely
imaginary. Hence, we get the following equation if ψ is an eigenspinor of D for an eigenvalue λ:

λRe
∫
D

〈ψ,X(ψ)〉 = −λRe
∫
∂D

〈ν · ψ,∇Xψ〉.

Let M be a complete Riemannian manifold with a pole p0, and let r denotes the distance
function from the point p0. For every positive number t, we define

D(t) = {x ∈ M|r(x) < t}.
Proposition 1. Assume that a vector field X satisfies the inequality

|X| ≤ C1r + C2

for some positive constants C1 and C2. If ψ is an L2 eigenspinor for an eigenvalue λ, then the
following equation holds:

λRe
∫
M

〈ψ,X(ψ)〉 = 0.

Remark. The assumption |X| ≤ C1r + C2 is satisfied, for example, if the inequality |∇X| ≤ C

holds ([4], Lemma 2.4).

Proof. If |ψ| and |∇ψ| belong to L2, then from the co-area formula there exists a sequence {rk}
such that

lim
k→∞

rk

∫
∂D(rk)

(|ψ|2 + |∇ψ|2) = 0

([4] p. 146, [6] p. 14). Since the domain of the closure of the Dirac operator consists of L2 spinor
fields with L2 first derivative, and

|〈ν · ψ,∇Xψ〉| ≤ const. rk(|ψ|2 + |∇ψ|2)

on ∂Dk for large k, we obtain that

lim
k→∞

∫
∂D(rk)

〈ν · ψ,∇Xψ〉 = 0

for an L2 eigenspinor ψ. Noting that the function 〈ψ,X(ψ)〉 is integrable, we complete
the proof. �

Of particular importance is the caseX = ∇f for some function f on M. Let us define for every
spinor ψ,

Hf (ψ) =
∑
i,j

(Hf )(ei, ej)ej · ∇eiψ
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where Hf is the Hessian of f and {ei} (i = 1, 2, . . . , n) is a local orthonormal frame. This is
nothing but X(ψ) for X = ∇f . Hence we obtain the next proposition.

Proposition 2. Let ψ be an L2 eigenspinor for an eigenvalue λ. Then for every function f, every
bounded domain D with smooth boundary in M, we have the equation

λRe
∫
D

〈ψ,Hf (ψ)〉 = −λRe
∫
∂D

〈ν · ψ,∇(∇f )ψ〉.
If in addition M has a pole and |Hf | is bounded, then the following equation holds:

λRe
∫
M

〈ψ,Hf (ψ)〉 = 0.

3. Non-existence of L2 eigenspinors

Since the basic identity is found in the previous section, we have only to show the existence
of appropriate vector fields or functions to prove the absence of eigenspinors. We perform this
invoking some results in [4,6].

First, we consider a manifold with a pole p0 which has a rotationally symmetric metric

ds2 = dr2 + γ(r)2dω2

with respect to the geodesic polar coordinate. In this equation, dω2 is the standard metric on the
unit sphere in the Euclidean space. Because the metric is smooth, we have γ(0) = 0 and γ ′(0) = 1.

From Proposition 5.5 in [4], the vector field X = γ ∂
∂r

satisfies the identity

∇X = γ ′ Id.

If ψ is an L2 eigenspinor, then we have the equation

X(ψ) = γ ′Dψ = λγ ′ψ
which implies

λRe〈ψ,Xψ〉 = λγ ′|ψ|2.
Because γ ′ > 0 near the point p0, we get the following theorem.

Theorem 1. Let M be a manifold with a pole which has a rotationally symmetric metric ds2 =
dr2 + γ(r)2dω2. If γ ′ ≥ 0 and γ ≤ C1r + C2 for some positive constants C1, C2, then M has no
L2 eigenspinors for non-zero eigenvalues.

Remark. SinceM \ {p0} has a warped product metric, this (or even stronger) conclusion may be
obtained by the method of the separation of variables.

Remark. The radial sectional curvature Kr of the rotationally symmetric metric is Kr = − γ ′′
γ

,
and Kr ≥ 0 implies γ ′ ≥ 0 ([8]).

Next, we take a bounded domainΩ in M and apply Proposition 2 to the exterior domainM \Ω.
Lemma 2 can be proved for an eigenspinor ψ even if M is replaced by the exterior domainM \Ω
provided the spinor ψ satisfies the Dirichlet boundary condition on ∂Ω. To be more precise, we
consider the Dirac operator on C∞

0 (Int(M \Ω)) and its self-adjoint extension. Because

0 = λRe
∫
M\Ω

〈ψ,X(ψ)〉 = λ

∫
M\Ω

γ ′|ψ|2,

we obtain the next theorem.
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Theorem 2. Let M be a manifolds with a pole which has a rotationally symmetric metric ds2 =
dr2 + γ(r)2dω2, and Ω be a bounded domain with smooth boundary in M. Assume that γ ≤
C1r + C2 for positive constants C1, C2 on M \Ω, and that (1) γ ′ ≤ 0, γ ′ 
≡ 0 on M \Ω or
(2) γ ′ ≥ 0, γ ′ 
≡ 0 on M \Ω. Then D with Dirichlet boundary condition on M \Ω has no L2

eigenspinors for non-zero eigenvalues.

Now, we consider an n-dimensional complete manifold M which has a pole p0 but is not
necessarily rotationally symmetric. Let r and s denote the distance function from the point p0 and
the scalar curvature, respectively.

From the Schrödinger–Lichnerowicz formula

D2ψ = ∇∗∇ψ + s

4
ψ,

we can deduce the following fact: if the scalar curvature M is non-negative, then for any spinor
field ψ ∈ W1(S) ∩ C∞(S),∫

M

‖Dψ‖2 ≥
∫
M

‖∇ψ‖2.

For a function f on M, let us take at each point an orthonormal frame {ei} so that the Hessian
Hf is of diagonal form with respect to this frame. We denote

ai = (Hf )(ei, ei) (1 ≤ i ≤ n)

with a1 = min {ai}, an = max {ai}.
Lemma 3. Assume that there exist positive constants α and β with

β ≤ Hf ≤ α

everywhere on M, and that M has non-negative scalar curvature, then the following inequality
holds for every spinor field ψ in W1(S) ∩ C∞(S):

Re
∫
M

〈Dψ,Hf (ψ)〉 ≥
[(

1 + √
n− 1

)
β − √

n− 1α
]
‖Dψ‖2

L2(M).

If in addition ψ is an eigenspinor of D for a real eigenvalue λ, then

λRe
∫
M

〈ψ,Hf (ψ)〉 ≥
[(

1 + √
n− 1

)
β − √

n− 1α
]
λ2‖ψ‖2

L2(M).

Proof. Let us define

A = Re
∑
i

ai〈Dψ, ei · ∇eiψ〉 − Re
∑
i

a1〈Dψ, ei · ∇eiψ〉.

Then we obtain that

|A| ≤
∣∣∣∣∣
∑
i

(ai − a1)〈Dψ, ei · ∇eiψ〉
∣∣∣∣∣ ≤ |Dψ|

√∑
i

(ai − a1)2

√∑
i

|ei · ∇eiψ|2

≤ √
n− 1(α− β)|Dψ||∇ψ|,

which implies the inequality∫
M

|A| ≤ √
n− 1(α− β)‖Dψ‖L2‖∇ψ‖L2 ≤ √

n− 1(α− β)‖Dψ‖2
L2 .



1788 S. Kawai / Journal of Geometry and Physics 56 (2006) 1782–1789

Hence, we have that

Re
∫
M

〈Dψ,Hf (ψ)〉 = Re
∫
M

∑
i

a1〈Dψ, ei · ∇eiψ〉 +
∫
M

A ≥ β‖Dψ‖2
L2(M) −

∫
M

|A|

=
[(

1 + √
n− 1

)
β − √

n− 1α
]
‖Dψ‖2

L2(M).

Thus the proof is completed. �

Modifying the proof of Theorem 4.2 in [6], we can show the following theorem.

Theorem 3. Let M be an n-dimensional Riemannian manifold with a pole p0, and let r be the
distance function from the point p0. Assume that the radial sectional curvatures Kr(x) of M at
the point x ∈ M satisfy

0 ≤ Kr(x) ≤ cn(1 − cn)

r2

with
√
n− 1√

n− 1 + 1
< cn < 1,

and that the scalar curvature of M is non-negative. Then the Dirac operator D has no L2 eigen-
spinors for non-zero eigenvalues.

Proof. The function f (x) = 1
2 r(x)2 is of class C2 and |∇f | ≤ r. Then we have

(Hf )(X,X) = (Xr)
2 + r(Hr)(XT ,XT )

for every tangent vector X where

X = Xr∇r +XT

is the orthogonal decomposition. Using Lemma 1.2 in [6], we get from the assumptions on the
radial curvatures, the inequality

cn

r
|XT |2 ≤ (Hr)(XT ,XT ) ≤ 1

r
|XT |2

which means in our terminology

an = 1, a1 ≥ cn.

Hence the inequality(
1 + √

n− 1
)
β − √

n− 1α > 0

holds with β = cn, α = 1, and the proof is completed by Proposition 2 and Lemma 3. �
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